Premium
The Emergence of Plant Nanobionics and Living Plants as Technology
Author(s) -
Lew Tedrick Thomas Salim,
Koman Volodymyr B.,
Gordiichuk Pavlo,
Park Minkyung,
Strano Michael S.
Publication year - 2020
Publication title -
advanced materials technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.184
H-Index - 42
ISSN - 2365-709X
DOI - 10.1002/admt.201900657
Subject(s) - nanotechnology , interface (matter) , function (biology) , computer science , biochemical engineering , engineering , biology , materials science , bubble , maximum bubble pressure method , evolutionary biology , parallel computing
Plants are naturally abundant and display high sensitivity to ecological factors to thrive in diverse environmental conditions. As sessile organisms, they have evolved complex, internal, and interplant signaling pathways with distinct structures to promptly adjust to the constantly changing environment. In the past five years, the unique ways in which they exchange information with and function in the environment have inspired an emerging field of plant nanobionics, which describes the interface between living plants and nanotechnology to impart the former with novel and useful functions. The structural merits of plant organs and organelles have also inspired the creation of plant‐derived structures through biointerfacing with nanoparticles containing electronic and optical properties. Here, the emerging applications and vision of plant nanobionics are highlighted together with related plant‐inspired materials in potentially replacing the myriad devices in the everyday lives stamped out of plastic, containing circuit boards and consuming power from the electrical grid. Applications in environmental sensing, communication devices, and energy harvesting and conversion are comprehensively discussed.