z-logo
Premium
Ferroelectric Extended Nanofluidic Channels for Room‐Temperature Microfuel Cells
Author(s) -
Pihosh Yuriy,
Kazoe Yutaka,
Mawatari Kazuma,
Seo Hangyeol,
Tabata Osamu,
Tsuchiya Toshiyuki,
Kitamura Kenji,
Tosa Masahiro,
Turkevych Ivan,
Kitamori Takehiko
Publication year - 2019
Publication title -
advanced materials technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.184
H-Index - 42
ISSN - 2365-709X
DOI - 10.1002/admt.201900252
Subject(s) - microfluidics , materials science , conductivity , optoelectronics , electrical conductor , nanotechnology , proton , membrane , nafion , atmospheric temperature range , electrode , electrochemistry , chemistry , composite material , biochemistry , physics , quantum mechanics , meteorology
Integration of fuel cells into microfluidic devices requires development of innovative proton conductors. Conventional Nafion membranes are incompatible with planar‐type microfluidic devices and require a high operation temperature of over 100 °C to achieve rapid proton transfer. In contrast, glass nanochannels (NCs) work as proton conductors even at room temperature and can be seamlessly integrated into microfluidic devices, which in turn makes microfuel cells (µFCs) attractive for a wide range of practical applications, such as power sources for ultrasmall autonomous electronics and chemo‐ or biosensors. However, the conductivity of NCs is limited by their small cross‐sectional area. It is revealed that spontaneous polarization of lithium niobite (LiNbO 3 ) used as the NC material enhances a surface charge of a SiO 2 layer formed on LiNbO 3 and induces a fast proton transfer in water in the NCs. It is demonstrated that a µFC containing the LiNbO 3 NCs demonstrates a proton diffusion coefficient that is 1.8 times higher than that of a reference device with bare glass NCs. In addition, such a µFC achieves a remarkable power output of up to ≈54 mW cm −2 at room temperature, which is 1.4 times higher than that of the similar device with bare glass NCs.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here