z-logo
Premium
Merging Electric Bacteria with Paper
Author(s) -
Gao Yang,
Choi Seokheun
Publication year - 2018
Publication title -
advanced materials technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 2.184
H-Index - 42
ISSN - 2365-709X
DOI - 10.1002/admt.201800118
Subject(s) - flexibility (engineering) , electronics , computer science , nanotechnology , transparency (behavior) , surface modification , sustainability , materials science , biochemical engineering , engineering , mechanical engineering , electrical engineering , statistics , mathematics , computer security , ecology , biology
Paper‐based electronics (papertronics) are recently considered as one of the most exciting device platforms because of their flexibility, sustainability, eco‐friendliness, and low cost as well as their excellent mechanical, dielectrical, and fluidic properties. Now, innovative structure engineering techniques can manipulate diameters of the cellulose fibers of paper, smoothing the roughness and controlling the transparency for numerous device applications. Novel functionalization techniques of paper with organic, inorganic, and biological entities enable many engineering possibilities, revolutionizing papertronics for the next generation of electronics. Among those techniques for new functionalities, integrating electric bacteria into paper has attracted considerable interest as a new energy technique for papertronics. Paper has unique synergistic characteristics including a porous and hydrophilic environment for bacterial viability, a high surface area for bacterial accumulation, and sustainability even in resource‐limited settings. In this work, comprehensive analytical and experimental approaches to provide a novel but realistic and accessible power source from bacteria loaded into paper are pursued. This report provides new approaches to revolutionarily activate the biobattery and significantly improve its shelf life. Furthermore, for the first time the practical efficacy of the explored technique is ensured, generating on‐demand energy even in resource‐limited environments.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here