z-logo
Premium
Fast Atomic Diffusion: Bulk and Short‐Circuit Anion Diffusion in Epitaxial Fe 2 O 3 Films Quantified Using Buried Isotopic Tracer Layers (Adv. Mater. Interfaces 9/2021)
Author(s) -
Kaspar Tiffany C.,
Taylor Sandra D.,
Yano Kayla H.,
Lach Timothy G.,
Zhou Yadong,
Zhu Zihua,
Kohnert Aaron A.,
Still Evan K.,
Hosemann Peter,
Spurgeon Steven R.,
Schreiber Daniel K.
Publication year - 2021
Publication title -
advanced materials interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.671
H-Index - 65
ISSN - 2196-7350
DOI - 10.1002/admi.202170050
Subject(s) - materials science , epitaxy , tracer , atom probe , diffusion , ion , nanometre , atomic layer epitaxy , thin film , lattice diffusion coefficient , molecular beam epitaxy , atom (system on chip) , analytical chemistry (journal) , lattice (music) , self diffusion , chemical physics , crystallography , layer (electronics) , nanotechnology , effective diffusion coefficient , chemistry , composite material , nuclear physics , transmission electron microscopy , computer science , acoustics , embedded system , chromatography , thermodynamics , physics , organic chemistry , self service , business , magnetic resonance imaging , marketing , radiology , medicine
Fast atomic diffusion through structural defects in Fe 2 O 3 is directly imaged for the first time at the sub‐nanometer level by atom probe tomography. In article number 2001768 by Tiffany C. Kaspar and co‐workers, model epitaxial and defect‐rich thin films of Fe 2 O 3 are deposited with molecular beam epitaxy, incorporating a tracer layer of 18 O within the film itself. Atomic‐level self‐diffusion is then visualized and quantified in 3D by APT, revealing ≈10 4 times faster oxygen diffusion along structural flaws than through the pristine lattice.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here