Premium
How Tribo‐Oxidation Alters the Tribological Properties of Copper and Its Oxides
Author(s) -
Lehmann Julia S.,
Schwaiger Ruth,
Rinke Monika,
Greiner Christian
Publication year - 2021
Publication title -
advanced materials interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.671
H-Index - 65
ISSN - 2196-7350
DOI - 10.1002/admi.202001673
Subject(s) - tribology , copper , materials science , oxide , x ray photoelectron spectroscopy , metal , metallurgy , copper oxide , composite material , chemical engineering , engineering
Tribochemical reactions in many applications determine the performance and lifetime of individual parts or entire engineering systems. The underlying processes are however not yet fully understood. Here, the tribological properties of copper and its oxides are investigated under mild tribological loading and for dry sliding. The oxides represent the late stages of a copper–sapphire tribo‐contact, once the whole copper surface is covered with an oxide. For this purpose, high‐purity copper, thermally‐oxidized and sintered Cu 2 O and CuO samples are tribologically loaded and eventually formed wear particles analyzed. The tribological behavior of the oxides is found to be beneficial for a reduction of the coefficient of friction (COF), mainly due to an increase in hardness. The results reveal tribochemical reactions when copper oxides are present, irrespective of whether they form during sliding or are existent from the beginning. Most strikingly, a reduction of copper oxide to metallic copper is observed in X‐ray photoelectron spectroscopy measurements. A more accurate understanding of tribo‐oxidation will allow for manufacturing well‐defined surfaces with enhanced tribological properties. This paves the way for extending the lifetime of contacts evincing tribo‐oxidation.