Premium
Improving Metal Adsorption on Triethylenetetramine (TETA) Functionalized SBA‐15 Mesoporous Silica Using Potentiometry, EPR and ssNMR
Author(s) -
Lachowicz Joanna Izabela,
Emwas AbdulHamid,
Delpiano Giulia Rossella,
Salis Andrea,
Piludu Marco,
Jaremko Lukasz,
Jaremko Mariusz
Publication year - 2020
Publication title -
advanced materials interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.671
H-Index - 65
ISSN - 2196-7350
DOI - 10.1002/admi.202000544
Subject(s) - potentiometric titration , triethylenetetramine , materials science , mesoporous silica , mesoporous material , metal , adsorption , chelation , nanomaterials , molecule , inorganic chemistry , metal organic framework , chemical engineering , chemistry , nanotechnology , organic chemistry , ion , engineering , metallurgy , catalysis
Nanomaterials have received growing attention in the treatment and diagnosis of neurological disorders because the low blood brain barrier permeability hinders the classical pharmacological approach. Metal ion chelators combined with nanoparticles prove effective in the treatment of neurodegeneration and are under extensive studies. Most chelating agents and metallodrugs compete with endogenous molecules for metal coordination, and do not reach the active site. Determining the competition between metallodrugs and endogenous molecules requires knowing the stability constants of formed metal complexes. In this study, for the first time, potentiometric titrations are used to determine metal complex formation constants, and to quantify ligand content in functionalized materials. This new potentiometric approach allows physico–chemical characterization of mesoporous functionalized materials and their metal adsorption capacity in water solution. The potentiometric results are compared with isotherm models obtained by spectroscopic measurements and yield rewarding data fitting. The potentiometric method described here can be extended to different types of nanostructured materials carrying surface ionizable groups.