Premium
Surface Modification of a MXene by an Aminosilane Coupling Agent
Author(s) -
Riazi Hossein,
Anayee Mark,
Hantanasirisakul Kanit,
Shamsabadi Ahmad Arabi,
Anasori Babak,
Gogotsi Yury,
Soroush Masoud
Publication year - 2020
Publication title -
advanced materials interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.671
H-Index - 65
ISSN - 2196-7350
DOI - 10.1002/admi.201902008
Subject(s) - surface modification , mxenes , materials science , x ray photoelectron spectroscopy , silane , surface charge , chemical engineering , amine gas treating , polymer chemistry , nanotechnology , organic chemistry , chemistry , composite material , engineering
MXenes, two‐dimensional (2D) transition metal carbides and/or nitrides, possess surface termination groups such as hydroxyl, oxygen, and fluorine, which are available for surface functionalization. Their surface chemistry is critical in many applications. This article reports amine functionalization of Ti 3 C 2 T x MXene surface with [3‐(2‐aminoethylamino)‐propyl]trimethoxysilane (AEAPTMS). Characterization techniques such as X‐ray photoelectron spectroscopy verify the success of the surface functionalization and confirm that the silane coupling agent bonds to Ti 3 C 2 T x surface both physically and chemically. The functionalization changes the MXene surface charge from −35 to +25 mV at neutral pH, which allows for in situ preparation of self‐assembled films. Further, surface charge measurements of the functionalized MXene at different pH values show that the functionalized MXene has an isoelectric point at a pH around 10.7, and the highest reported positive surface charge of +62 mV at a pH of 2.58. Furthermore, the existence of a mixture of different orientations of AEAPTMS and the simultaneous presence of protonated and free amine groups on the surface of Ti 3 C 2 T x are demonstrated. The availability of free amine groups on the surface potentially permits the fabrication of crosslinked electrically conductive MXene/epoxy composites, dye adsorbents, high‐performance membranes, and drug carriers. Surface modifications of this type are applicable to many other MXenes.