z-logo
Premium
Hierarchically CuInS 2 Nanosheet‐Constructed Nanowire Arrays for Photoelectrochemical Water Splitting
Author(s) -
Li Ming,
Zhao Renjie,
Su Yanjie,
Hu Jing,
Yang Zhi,
Zhang Yafei
Publication year - 2016
Publication title -
advanced materials interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.671
H-Index - 65
ISSN - 2196-7350
DOI - 10.1002/admi.201600494
Subject(s) - nanosheet , materials science , photocurrent , nanowire , water splitting , nanotechnology , nanometre , reversible hydrogen electrode , electrode , optoelectronics , electrochemistry , chemical engineering , catalysis , composite material , chemistry , reference electrode , biochemistry , photocatalysis , engineering
This paper reports a facile self‐templated method to prepare hierarchically CuInS 2 nanosheet‐constructed nanowire arrays (NCNAs) using Cu 2 S nanowires arrays (NWAs) as the template. The as‐synthesized CuInS 2 nanosheets show ultrathin thickness of ≈1.2 nm, corresponding to the thickness of 4 atomically thick CuInS 2 slab along the [221] direction. The CuInS 2 nanosheet‐constructed nanowires exhibit diameters of several hundred nanometers and lengths of several micrometers. The novel exchange‐peeling growth mechanism suggests that the In 3+ insertion proceeds preferentially along the (−204) facets of pristine Cu 2 S nanowires, and the distortions and strains sourced from lattice mismatch cause the longitudinal expansion along the c ‐axis and the splitting of S−S bond during the formation of 3D CuInS 2 NCNAs. It is also found that relative higher In 3+ concentration is beneficial to this process. Compared to 0.15 mA cm −2 of the pristine Cu 2 S NWAs, the CuInS 2 photocathodes show an enhanced photocurrent of 0.49 mA cm −2 at −0.1 V versus the reversible hydrogen electrode, and the photocurrent can be further increased to 1.14 mA cm −2 via decoration with CdS quantum dots. The density functional theory calculation results confirm that the ultrathin CuInS 2 nanosheets favor for higher carrier mobility, thus ensure promoted photoelectrochemical efficiency.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom