z-logo
Premium
Dual‐Layer Superamphiphobic/Superhydrophobic‐Oleophilic Nanofibrous Membranes with Unidirectional Oil‐Transport Ability and Strengthened Oil–Water Separation Performance
Author(s) -
Wang Hongxia,
Zhou Hua,
Niu Haitao,
Zhang Jin,
Du Yong,
Lin Tong
Publication year - 2015
Publication title -
advanced materials interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.671
H-Index - 65
ISSN - 2196-7350
DOI - 10.1002/admi.201400506
Subject(s) - materials science , membrane , electrospinning , nanofiber , chemical engineering , layer (electronics) , water transport , nanotechnology , composite material , polymer , chemistry , environmental engineering , water flow , biochemistry , engineering
Thin porous membranes with unidirectional oil‐transport capacity offer great opportunities for intelligent manipulation of oil fluids and development of advanced membrane technologies. However, directional oil‐transport membranes and their unique membrane properties have seldom been reported in research literature. Here, it is proven that a dual‐layer nanofibrous membrane comprising a layer of superamphiphobic nanofibers and a layer of superhydrophobic oleophilic nanofibers has an unexpected directional oil‐transport ability, but is highly superhydrophobic to liquid water. This novel fibrous membrane is prepared by a layered electrospinning technique using poly(vinylidene fluoride‐hexafluoropropylene) (PVDF‐HFP), PVDP‐HFP containing well‐dispersed FD‐POSS (fluorinated decyl polyhedral oligomeric silsesquioxanes), and FAS (fluorinated alkyl silane) as materials. The directional oil‐transport is selective only to oil fluids with a surface tension in the range of 23.8–34.0 mN m –1 . By using a mixture of diesel and water, it is further proven that this dual‐layer nanofibrous membrane has a higher diesel–water separation ability than the single‐layer nanofiber membranes. This novel nanofibrous membrane and the incredible oil‐transport ability may lead to the development of intelligent membrane materials and advanced oil–water separation technologies for diverse applications in daily life and industry.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here