Premium
Single‐Pot Encapsulation of Oxide Particles within a Polysaccharide Multilayer Nanocoating
Author(s) -
Jankolovits Joseph,
Gazit Oz M.,
Nigra Michael M.,
Bohling James,
Roper John A.,
Katz Alexander
Publication year - 2015
Publication title -
advanced materials interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.671
H-Index - 65
ISSN - 2196-7350
DOI - 10.1002/admi.201400465
Subject(s) - materials science , polymer , oxide , coating , chemical engineering , nanotechnology , colloid , porosity , cellulose , nanoparticle , composite material , engineering , metallurgy
Porous coatings on oxide surfaces are invaluable in emerging applications involving biomaterials, drug delivery, sensing, and colloidal suspensions such as paints and coatings. The synthesis of such coatings has conventionally required complex multiple‐step syntheses and petroleum‐derived polymers. In this manuscript, the single‐step synthesis of uniform nanocoatings on oxide particles is demonstrated using a one‐pot approach and glucans derived from cellulose, which enables the synthetic tunability of polymer coatings by leveraging on established sugar chemistry. The resulting ≈10 nm thick uniform coatings are synthesized by imbibing a crosslinking agent, such as SiCl 4 , into the pores of the oxide particle, which localizes polymer crosslinking to the immediate proximity of the inorganic‐oxide surface. The resulting nanocoatings encapsulate the particles and render the inorganic‐oxide surface inaccessible to polyanions though accessible to small molecules. The surface chemistry is tuned for enhanced dispersion stability in water by covalently introducing of carboxylates to the coating.