Premium
Strongly Coupled Interfaces between a Heterogeneous Carbon Host and a Sulfur‐Containing Guest for Highly Stable Lithium‐Sulfur Batteries: Mechanistic Insight into Capacity Degradation
Author(s) -
Peng HongJie,
Hou TingZheng,
Zhang Qiang,
Huang JiaQi,
Cheng XinBing,
Guo MengQing,
Yuan Zhe,
He LianYuan,
Wei Fei
Publication year - 2014
Publication title -
advanced materials interfaces
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.671
H-Index - 65
ISSN - 2196-7350
DOI - 10.1002/admi.201400227
Subject(s) - materials science , electrochemistry , cathode , sulfur , graphene , redox , chemical engineering , electrode , carbon fibers , adsorption , polarization (electrochemistry) , degradation (telecommunications) , lithium (medication) , nanotechnology , chemical physics , composite number , chemistry , organic chemistry , composite material , telecommunications , computer science , engineering , metallurgy , medicine , endocrinology
The use of conductive frameworks as the host scaffold to obtain nanostructured sulfur cathodes is an efficient way to increase the sulfur utilization for redox reaction in Li‐S batteries with large discharge capacity and high energy density. However, due to dynamical interfaces driven by phase evolution between the conductive hosts and S‐containing guests during cycling, the cathode still faces poor stability. Herein, the use of O‐/N‐containing nanocarbon as the conductive host sheds a light on the role of the dynamic interface between the carbon host and S‐containing guest for a stable Li‐S cell. The outstanding reversibility and stability of N‐doped C/S cathodes are attributed to the favorable guest‐host interaction at the electron‐modified interface, manifesting as (i) a chemical gradient to adsorb polar polysulfides and (ii) ameliorative deposition and recharging of Li 2 S on the region of electron‐rich pyridinic N and a graphene domain surrounding quaternary N. Highly reversible, efficient and stable Li storage properties such as mitigated polarization and charge barrier, high capacity of 1370 and 964 mAh g −1 at 0.1 and 1.0 C, respectively, and 70% of capacity retention after 200 cycles are achieved. Mechanistic insight into the capacity fading inspires the rational design on electrodes for high‐performance electrochemical systems.