z-logo
Premium
MIL‐101‐Derived Mesoporous Carbon Supporting Highly Exposed Fe Single‐Atom Sites as Efficient Oxygen Reduction Reaction Catalysts
Author(s) -
Xie Xiaoying,
Peng Lishan,
Yang Hongzhou,
Waterhouse Geoffrey I. N.,
Shang Lu,
Zhang Tierui
Publication year - 2021
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.202101038
Subject(s) - catalysis , mesoporous material , materials science , microporous material , pyrolysis , carbon fibers , zinc , metal organic framework , chemical engineering , inorganic chemistry , chemistry , organic chemistry , metallurgy , adsorption , composite number , engineering , composite material
Fe single‐atom catalysts (Fe SACs) with atomic FeN x active sites are very promising alternatives to platinum‐based catalysts for the oxygen reduction reaction (ORR). The pyrolysis of metal–organic frameworks (MOFs) is a common approach for preparing Fe SACs, though most MOF‐derived catalysts reported to date are microporous and thus suffer from poor mass transfer and a high proportion of catalytically inaccessible FeN x active sites. Herein, NH 2 ‐MIL‐101(Al), a MOF possessing a mesoporous cage architecture, is used as the precursor to prepare a series of N‐doped carbon supports (denoted herein as NC‐MIL101‐T) with a well‐defined mesoporous structure at different pyrolysis temperatures. The NC‐MIL101‐T supports are then impregnated with a Fe(II)‐phenanthroline complex, and heated again to yield Fe SAC‐MIL101‐T catalysts rich in accessible FeN x single atom sites. The best performing Fe SAC‐MIL101‐1000 catalyst offers outstanding ORR activity in alkaline media, evidenced by an ORR half‐wave potential of 0.94 V (vs RHE) in 0.1 m KOH, as well as excellent performance in both aqueous primary zinc–air batteries (a near maximum theoretical energy density of 984.2 Wh kg Zn −1 ) and solid‐state zinc–air batteries (a peak power density of 50.6 mW cm −2 and a specific capacity of 724.0 mAh kg Zn −1 ).

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here