z-logo
Premium
Interfacial Trap‐Assisted Triplet Generation in Lead Halide Perovskite Sensitized Solid‐State Upconversion
Author(s) -
Wang Lili,
Yoo Jason J.,
Lin TingAn,
Perkinson Collin F.,
Lu Yongli,
Baldo Marc A.,
Bawendi Moungi G.
Publication year - 2021
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.202100854
Subject(s) - photon upconversion , materials science , perovskite (structure) , optoelectronics , band gap , photoluminescence , photochemistry , chemical physics , nanotechnology , doping , chemical engineering , chemistry , engineering
Photon upconversion via triplet–triplet annihilation (TTA) has promise for overcoming the Shockley–Queisser limit for single‐junction solar cells by allowing the utilization of sub‐bandgap photons. Recently, bulk perovskites have been employed as sensitizers in solid‐state upconversion devices to circumvent poor exciton diffusion in previous nanocrystal (NC)‐sensitized devices. However, an in‐depth understanding of the underlying photophysics of perovskite‐sensitized triplet generation is still lacking due to the difficulty of precisely controlling interfacial properties of fully solution‐processed devices. In this study, interfacial properties of upconversion devices are adjusted by a mild surface solvent treatment, specifically altering perovskite surface properties without perturbing the bulk perovskite. Thermal evaporation of the annihilator precludes further solvent contamination. Counterintuitively, devices with more interfacial traps show brighter upconversion. Approximately an order of magnitude difference in upconversion brightness is observed across different interfacial solvent treatments. Sequential charge transfer and interfacial trap‐assisted triplet sensitization are demonstrated by comparing upconversion performance, transient photoluminescence dynamics, and magnetic field dependence of the devices. Incomplete triplet conversion from transferred charges and consequent triplet‐charge annihilation (TCA) are also observed. The observations highlight the importance of interfacial control and provide guidance for further design and optimization of upconversion devices using perovskites or other semiconductors as sensitizers.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here