Premium
Unveiling the Stabilities of Nickel‐Based Layered Oxide Cathodes at an Identical Degree of Delithiation in Lithium‐Based Batteries
Author(s) -
Xie Qiang,
Cui Zehao,
Manthiram Arumugam
Publication year - 2021
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.202100804
Subject(s) - materials science , cathode , nickel , electrochemistry , interphase , thermal stability , oxide , lithium (medication) , chemical engineering , metallurgy , electrode , chemistry , medicine , biology , engineering , genetics , endocrinology
Bulk, surface, and interfacial instabilities that impact the cycle and thermal performances are the major challenges with high‐energy‐density LiNi 1− x – y Mn x Co y O 2 (NMC) cathodes with high nickel contents. It is generally believed that the instabilities and performance losses become exponentially aggravated as the nickel content increases. Disparate from this prevailing belief, it is herein demonstrated that NMC cathodes with higher Ni contents may imply better overall stability than “lower‐Ni” cathodes under an identical degree of delithiation (charging) conditions. With two representative cathodes, LiNi 0.8 Mn 0.1 Co 0.1 O 2 and LiNiO 2 , a systematic investigation into their stabilities with control of the degree of delithiation is presented. Electrochemical tests indicate that LiNiO 2 displays better cyclability than LiNi 0.8 Mn 0.1 Co 0.1 O 2 at the same delithiation state. Comprehensive structural and interphase investigations unveil that the inferior cyclability of LiNi 0.8 Mn 0.1 Co 0.1 O 2 predominantly results from aggravated parasitic reactions, and the interphase stability may be more critical than lattice stability in dictating cyclability. Also, LiNiO 2 delivers similar or better thermal behavior than LiNi 0.8 Mn 0.1 Co 0.1 O 2 . The findings demonstrate a strong correlation of the stability of NMC cathodes to the degree of delithiation state rather than the Ni content itself, highlighting the importance of reassessing the true implications of Ni content and structural and interphasial tuning on the stabilities of NMC cathodes.