Premium
Conferring Ti‐Based MOFs with Defects for Enhanced Sonodynamic Cancer Therapy
Author(s) -
Liang Shuang,
Xiao Xiao,
Bai Lixin,
Liu Bin,
Yuan Meng,
Ma Ping'an,
Pang Maolin,
Cheng Ziyong,
Lin Jun
Publication year - 2021
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.202100333
Subject(s) - sonodynamic therapy , materials science , reactive oxygen species , biocompatible material , cancer therapy , metal organic framework , nanotechnology , biomedical engineering , cancer , chemistry , medicine , biochemistry , adsorption
The development of highly efficient, multifunctional, and biocompatible sonosensitizer is still a priority for current sonodynamic therapy (SDT). Herein, a defect‐rich Ti‐based metal–organic framework (MOF) (D‐MOF(Ti)) with greatly improved sonosensitizing effect is simply constructed and used for enhanced SDT. Compared with the commonly used sonosensitizer TiO 2 , D‐MOF(Ti) results in a superior reactive oxygen species (ROS) yield under ultrasound (US) irradiation due to its narrow bandgap, which principally improves the US‐triggered electron–hole separation. Meanwhile, due to the existence of Ti 3+ ions, D‐MOF(Ti) also exhibits a high level of Fenton‐like activity to enable chemodynamic therapy. Particularly, US as the excitation source of SDT can simultaneously enhance the Fenton‐like reaction to achieve remarkably synergistic outcomes for oncotherapy. More importantly, D‐MOF(Ti) can be degraded and metabolized out of the body after completion of its therapeutic functions without off‐target toxicity. Overall, this work identifies a novel Ti‐familial sonosensitizer harboring great potential for synergistic sonodynamic and chemodynamic cancer therapy.