z-logo
Premium
Bioinspired Soft Microactuators
Author(s) -
Zhu Pingan,
Chen Rifei,
Zhou Chunmei,
Aizenberg Michael,
Aizenberg Joanna,
Wang Liqiu
Publication year - 2021
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.202008558
Subject(s) - soft robotics , actuator , materials science , miniaturization , artificial muscle , nanotechnology , soft materials , mechanical engineering , ribbon , fabrication , microfluidics , robotics , composite material , robot , computer science , artificial intelligence , engineering , medicine , alternative medicine , pathology
Soft actuators have the potential of revolutionizing the field of robotics. However, it has been a long‐standing challenge to achieve simultaneously: i) miniaturization of soft actuators, ii) high contrast between materials properties at their “on” and “off” states, iii) significant actuation for high‐payload mechanical work, and iv) ability to perform diverse shape transformations. This challenge is addressed by synergistically utilizing structural concepts found in the dermis of sea cucumbers and the tendrils of climbing plants, together with microfluidic fabrication to create diatomite‐laden hygroscopically responsive fibers with a discontinuous ribbon of stiff, asymmetrically shaped, and hygroscopically inactive microparticles embedded inside. The microactuators can undergo various deformations and have very high property contrast ratios (20–850 for various mechanical characteristics of interest) between hydrated and dehydrated states. The resulting energy density, actuation strain, and actuation stress are shown to exceed those of natural muscle by ≈4, >2, and >30 times, respectively, and their weight‐lifting ratio is 2–3 orders of magnitude higher than the value of recent hygroscopic actuators. This work offers a new and general way to design and fabricate next‐generation soft microactuators, and thus advances the field of soft robotics by tailoring the structure and properties of deformable elements to suit a desired application.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here