z-logo
Premium
High‐Definition Single‐Cell Printing: Cell‐by‐Cell Fabrication of Biological Structures
Author(s) -
Zhang Pengfei,
Abate Adam R.
Publication year - 2020
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.202005346
Subject(s) - materials science , fabrication , nanotechnology , cell , 3d printing , composite material , biology , pathology , medicine , alternative medicine , genetics
Bioprinting is a powerful technology with the potential to transform medical device manufacturing, organ replacement, and the treatment of diseases and physiologic malformations. However, current bioprinters are unable to reliably print the fundamental unit of all living things, single cells. A high‐definition single‐cell printing, a novel microfluidic technology, is presented here that can accurately print single cells from a mixture of multiple candidates. The bioprinter employs a highly miniaturized microfluidic sorter to deterministically select single cells of interest for printing, achieving an accuracy of ≈10 µm and speed of ≈100 Hz. This approach is demonstrated by fabricating intricate cell patterns with pre‐defined features through selective single‐cell printing. The approach is used to synthesize well‐defined spheroids with controlled composition and morphology. The speed, accuracy, and flexibility of the approach will advance bioprinting to enable new studies in organoid science, tissue engineering, and spatially targeted cell therapies.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here