z-logo
Premium
Stabilization of Sn Anode through Structural Reconstruction of a Cu–Sn Intermetallic Coating Layer
Author(s) -
Wang Guanzhi,
Aubin Megan,
Mehta Abhishek,
Tian Huajun,
Chang Jinfa,
Kushima Akihiro,
Sohn Yongho,
Yang Yang
Publication year - 2020
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.202003684
Subject(s) - materials science , intermetallic , anode , coating , tin , layer (electronics) , lithium (medication) , composite material , chemical engineering , alloy , metallurgy , electrode , chemistry , medicine , engineering , endocrinology
The metallic tin (Sn) anode is a promising candidate for next‐generation lithium‐ion batteries (LIBs) due to its high theoretical capacity and electrical conductivity. However, Sn suffers from severe mechanical degradation caused by large volume changes during lithiation/delithiation, which leads to a rapid capacity decay for LIBs application. Herein, a Cu–Sn (e.g., Cu 3 Sn) intermetallic coating layer (ICL) is rationally designed to stabilize Sn through a structural reconstruction mechanism. The low activity of the Cu–Sn ICL against lithiation/delithiation enables the gradual separation of the metallic Cu phase from the Cu–Sn ICL, which provides a regulatable and appropriate distribution of Cu to buffer volume change of Sn anode. Concurrently, the homogeneous distribution of the separated Sn together with Cu promotes uniform lithiation/delithiation, mitigating the internal stress. In addition, the residual rigid Cu–Sn intermetallic shows terrific mechanical integrity that resists the plastic deformation during the lithiation/delithiation. As a result, the Sn anode enhanced by the Cu–Sn ICL shows a significant improvement in cycling stability with a dramatically reduced capacity decay rate of 0.03% per cycle for 1000 cycles. The structural reconstruction mechanism in this work shines a light on new materials and structural design that can stabilize high‐performance and high‐volume‐change electrodes for rechargeable batteries and beyond.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here