Premium
Understanding Plant Biomass via Computational Modeling
Author(s) -
Zhou Shengfei,
Jin Kai,
Buehler Markus J.
Publication year - 2021
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.202003206
Subject(s) - lignin , biomass (ecology) , hemicellulose , cellulose , materials science , raw material , nanomaterials , biochemical engineering , nanotechnology , lignocellulosic biomass , chemical engineering , organic chemistry , chemistry , engineering , ecology , biology
Plant biomass, especially wood, has been used for structural materials since ancient times. It is also showing great potential for new structural materials and it is the major feedstock for the emerging biorefineries for building a sustainable society. The plant cell wall is a hierarchical matrix of mainly cellulose, hemicellulose, and lignin. Herein, the structure, properties, and reactions of cellulose, lignin, and wood cell walls, studied using density functional theory (DFT) and molecular dynamics (MD), which are the widely used computational modeling approaches, are reviewed. Computational modeling, which has played a crucial role in understanding the structure and properties of plant biomass and its nanomaterials, may serve a leading role on developing new hierarchical materials from biomass in the future.