z-logo
Premium
Holistically Engineered Polymer–Polymer and Polymer–Ion Interactions in Biocompatible Polyvinyl Alcohol Blends for High‐Performance Triboelectric Devices in Self‐Powered Wearable Cardiovascular Monitorings
Author(s) -
Wang Ruoxing,
Mu Liwen,
Bao Yukai,
Lin Han,
Ji Tuo,
Shi Yijun,
Zhu Jiahua,
Wu Wenzhuo
Publication year - 2020
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.202002878
Subject(s) - triboelectric effect , materials science , polyvinyl alcohol , biocompatible material , wearable computer , nanotechnology , wearable technology , bioelectronics , polymer , biosensor , computer science , biomedical engineering , composite material , engineering , embedded system
The capability of sensor systems to efficiently scavenge their operational power from stray, weak environmental energies through sustainable pathways could enable viable schemes for self‐powered health diagnostics and therapeutics. Triboelectric nanogenerators (TENG) can effectively transform the otherwise wasted environmental, mechanical energy into electrical power. Recent advances in TENGs have resulted in a significant boost in output performance. However, obstacles hindering the development of efficient triboelectric devices based on biocompatible materials continue to prevail. Being one of the most widely used polymers for biomedical applications, polyvinyl alcohol (PVA) presents exciting opportunities for biocompatible, wearable TENGs. Here, the holistic engineering and systematic characterization of the impact of molecular and ionic fillers on PVA blends’ triboelectric performance is presented for the first time. Triboelectric devices built with optimized PVA‐gelatin composite films exhibit stable and robust triboelectricity outputs. Such wearable devices can detect the imperceptible skin deformation induced by the human pulse and capture the cardiovascular information encoded in the pulse signals with high fidelity. The gained fundamental understanding and demonstrated capabilities enable the rational design and holistic engineering of novel materials for more capable biocompatible triboelectric devices that can continuously monitor vital physiological signals for self‐powered health diagnostics and therapeutics.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here