Premium
Designing Outside the Box: Unlocking the Geometric Freedom of Melt Electrowriting using Microscale Layer Shifting
Author(s) -
Liashenko Ievgenii,
Hrynevich Andrei,
Dalton Paul D.
Publication year - 2020
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.202001874
Subject(s) - microscale chemistry , stacking , materials science , 3d printing , layer (electronics) , flexibility (engineering) , trajectory , layer by layer , nanotechnology , composite material , mechanical engineering , engineering , physics , nuclear magnetic resonance , astronomy , statistics , mathematics education , mathematics
Melt electrowriting, a high‐resolution additive manufacturing technology, has so far been developed with vertical stacking of fiber layers, with a printing trajectory that is constant for each layer. In this work, microscale layer shifting is introduced through deliberately offsetting the printing trajectory for each printed layer. Inaccuracies during the printing of sinusoidal walls are corrected via layer shifting, resulting in accurate control of their geometry and mechanical properties. Furthermore, more substantial layer shifting allows stacking of fiber layers in a horizontal manner, overcoming the electrostatic autofocusing effect that favors vertical layer stacking. Novel nonlinear geometries, such as overhangs, wall texturing and branching, and smooth and abrupt changes in printing trajectory are presented, demonstrating the flexibility of the layer shifting approach beyond the state‐of‐the‐art. The practice of microscale layer shifting for melt electrowriting enables more complex geometries that promise to have a profound impact on the development of products in a broad range of applications.