z-logo
Premium
Micro‐ and Nanopatterning of Halide Perovskites Where Crystal Engineering for Emerging Photoelectronics Meets Integrated Device Array Technology
Author(s) -
Jeong Beomjin,
Han Hyowon,
Park Cheolmin
Publication year - 2020
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.202000597
Subject(s) - materials science , nanotechnology , lithography , photolithography , nanometre , photovoltaics , halide , optoelectronics , photovoltaic system , electrical engineering , engineering , composite material , inorganic chemistry , chemistry
Tremendous efforts have been devoted to developing thin film halide perovskites (HPs) for use in high‐performance photoelectronic devices, including solar cells, displays, and photodetectors. Furthermore, structured HPs with periodic micro‐ or nanopatterns have recently attracted significant interest due to their potential to not only improve the efficiency of an individual device via the controlled arrangement of HP crystals into a confined geometry, but also to technologically pixelate the device into arrays suitable for future commercialization. However, micro‐ or nanopatterning of HPs is not usually compatible with conventional photolithography, which is detrimental to ionic HPs and requires special techniques. Herein, a comprehensive overview of the state‐of‐the‐art technologies used to develop micro‐ and nanometer‐scale HP patterns, with an emphasis on their controlled microstructures based on top‐down and bottom‐up approaches, and their potential for future applications, is provided. Top‐down approaches include modified conventional lithographic techniques and soft‐lithographic methods, while bottom‐up approaches include template‐assisted patterning of HPs based on lithographically defined prepatterns and self‐assembly. HP patterning is shown here to not only improve device performance, but also to reveal the unprecedented functionality of HPs, leading to new research areas that utilize their novel photophysical properties.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here