Premium
A Ternary Hybrid‐Cation Room‐Temperature Liquid Metal Battery and Interfacial Selection Mechanism Study
Author(s) -
Guo Xuelin,
Ding Yu,
Gao Hongcai,
Goodenough John B.,
Yu Guihua
Publication year - 2020
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.202000316
Subject(s) - materials science , anode , battery (electricity) , cathode , ternary operation , electrochemistry , alkali metal , potassium ion battery , chemical engineering , alloy , ion , capacity loss , inorganic chemistry , composite material , thermodynamics , electrode , lithium vanadium phosphate battery , chemistry , organic chemistry , power (physics) , physics , computer science , programming language , engineering
The dendrite‐free sodium–potassium (Na–K) liquid alloy composed of two alkali metals is one of the ideal alternatives for Li metal as an anode material while maintaining large capacity, low potential, and high abundance. However, Na‐ or K‐ion batteries have limited cathode materials that can deliver stably large capacity. Combining advantages of both, a hybrid‐cation liquid metal battery is designed for a Li‐ion‐insertion‐based cathode to deliver stable high capacity using a Na–K liquid anode to avoid dendrites. The mechanical property of the Na–K alloy is confirmed by simulation and experimental characterization, which leads to stable cycling performance. The charge carrier selection principle in this ternary hybrid‐cation system is investigated, showing consistency with the proposed interfacial layer formation and ion distribution mechanism for the electrochemical process as well as the good stability. With Li ions contributing stable cycling as the cathode charge carrier, the K ion working as charge carrier on the anode, and Na as the medium to liquefy K metal, such a ternary hybrid battery system not only inherits the rich battery chemistry of Li‐insertion cathodes but also broadens the understanding of alkali metal alloys and hybrid‐ion battery chemistry.