Premium
Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis
Author(s) -
Li Siwei,
Miao Peng,
Zhang Yuanyuan,
Wu Jie,
Zhang Bin,
Du Yunchen,
Han Xijiang,
Sun Jianmin,
Xu Ping
Publication year - 2021
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.202000086
Subject(s) - plasmon , materials science , nanomaterials , photocatalysis , nanotechnology , electrocatalyst , surface plasmon resonance , nanostructure , dissociation (chemistry) , surface plasmon , catalysis , oxygen evolution , photochemistry , nanoparticle , chemistry , electrochemistry , optoelectronics , electrode , organic chemistry
Plasmonic nanomaterials coupled with catalytically active surfaces can provide unique opportunities for various catalysis applications, where surface plasmons produced upon proper light excitation can be adopted to drive and/or facilitate various chemical reactions. A brief introduction to the localized surface plasmon resonance and recent design and fabrication of highly efficient plasmonic nanostructures, including plasmonic metal nanostructures and metal/semiconductor heterostructures is given. Taking advantage of these plasmonic nanostructures, the following highlights summarize recent advances in plasmon‐driven photochemical reactions (coupling reactions, O 2 dissociation and oxidation reactions, H 2 dissociation and hydrogenation reactions, N 2 fixation and NH 3 decomposition, and CO 2 reduction) and plasmon‐enhanced electrocatalytic reactions (hydrogen evolution reaction, oxygen reduction reaction, oxygen evolution reaction, alcohol oxidation reaction, and CO 2 reduction). Theoretical and experimental approaches for understanding the underlying mechanism of surface plasmon are discussed. A proper discussion and perspective of the remaining challenges and future opportunities for plasmonic nanomaterials and plasmon‐related chemistry in the field of energy conversion and storage is given in conclusion.