Premium
Review of Emerging Potassium–Sulfur Batteries
Author(s) -
Ding Jia,
Zhang Hao,
Fan Wenjie,
Zhong Cheng,
Hu Wenbin,
Mitlin David
Publication year - 2020
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201908007
Subject(s) - polysulfide , electrolyte , anode , electrochemistry , sulfur , materials science , cathode , battery (electricity) , potassium , eutectic system , sulfide , lithium–sulfur battery , nanotechnology , chemical engineering , chemistry , electrode , metallurgy , alloy , thermodynamics , physics , power (physics) , engineering
This is the first review on potassium–sulfur (K–S) batteries (KSBs), which are emerging metal battery (MB) systems. Since KSBs are quite new, there are fundamental questions regarding the electrochemistry of S‐based cathode and of K metal anode, as well as the holistic aspects of full‐cell performance. The manuscript begins with a critical discussion regarding the potassium–sulfur electrochemistry and on how it differs from the much better‐known lithium–sulfur. Cathodes are discussed next, focusing on the role of sulfur structure, carbon host chemistry and porosity, and electrolytes in establishing the reversible potassium sulfide K 2 S n phase sequence, the parasitic polysulfide shuttle, pulverization‐driven capacity fade, etc. Following is a discussion of solid‐state electrolytes (SSEs), including of hybrid solid–liquid systems that show much promise. Potassium metal anodes are then critically reviewed, emphasizing electrolyte reactions to form stable versus unstable solid electrolyte interphase (SEI), covering the current understanding of potassium dendrites, and highlighting the deep‐eutectic K–Na alloying approaches for room temperature liquid anodes. The manuscript concludes with K–S batteries, focusing on cell architectures and providing quantitative performance comparisons as master plots. Unanswered scientific/technological questions are identified, emerging research opportunities are discussed, and potential experimental and simulation‐based studies that can unravel these unknowns are proposed.