z-logo
Premium
A New Microengineered Platform for 4D Tracking of Single Cells in a Stem‐Cell‐Based In Vitro Morphogenesis Model
Author(s) -
Samal Pinak,
Maurer Philipp,
Blitterswijk Clemens,
Truckenmüller Roman,
Giselbrecht Stefan
Publication year - 2020
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201907966
Subject(s) - morphogenesis , embryonic stem cell , microbiology and biotechnology , stem cell , multicellular organism , materials science , microscale chemistry , cell , biology , nanotechnology , genetics , mathematics education , mathematics , gene
Recently developed stem‐cell‐based in vitro models of morphogenesis can help shed light on the mechanisms involved in embryonic patterning. These models are showcased using traditional cell culture platforms and materials, which allow limited control over the biological system and usually do not support high‐content imaging. In contrast, using advanced microengineered tools can help in microscale control, long‐term culture, and real‐time data acquisition from such biological models and aid in elucidating the underlying mechanisms. Here, a new culturing, manipulation and analysis platform is described to study in vitro morphogenesis using thin polycarbonate film‐based microdevices. A pipeline consisting of open‐source software to quantify 3D cell movement using 4D image acquisition is developed to analyze cell migration within the multicellular clusters. It is shown that the platform can be used to control and study morphogenesis in non‐adherent cultures of the P19C5 mouse stem cell line and mouse embryonic stem cells (mESCs) that show symmetry breaking and axial elongation events similar to early embryonic development. Using the new platform, it is found that localized cell proliferation and coordinated cell migration result in elongation morphogenesis of the P19C5 aggregates. Further, it is found that polarization and elongation of mESC aggregates are dependent on directed cell migration.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here