z-logo
Premium
Internal‐Field‐Enhanced Charge Separation in a Single‐Domain Ferroelectric PbTiO 3 Photocatalyst
Author(s) -
Liu Yong,
Ye Sheng,
Xie Huichen,
Zhu Jian,
Shi Quan,
Ta Na,
Chen Ruotian,
Gao Yuying,
An Hongyu,
Nie Wei,
Jing Huanwang,
Fan Fengtao,
Li Can
Publication year - 2020
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201906513
Subject(s) - ferroelectricity , materials science , dielectric , polarization (electrochemistry) , electric field , surface photovoltage , depolarization , electron , ferroelectric ceramics , optoelectronics , chemical physics , condensed matter physics , spectroscopy , chemistry , physics , endocrinology , medicine , quantum mechanics
Ferroelectric materials with spontaneous polarization‐induced internal electric fields have drawn increasing attention in solar fuel production due to the intrinsic polarized structure. However, the origination of charge separation in these materials at the nano/microlevel is ambiguous owing to the complexity of the multielectric fields. Besides, the observed charge separation ability is far from theoretical expectation. Herein, by spatially resolved surface photovoltage spectroscopy, it is clearly demonstrated that the depolarization field in single‐domain ferroelectric PbTiO 3 (PTO) nanoplates is the main driving force for charge separation and it can effectively drive photogenerated electrons and holes to the positive and negative polarization facets, respectively. Moreover, the charge separation ability of PTO nanoplates increases with increasing particle size along the polarization direction, due to the increasing potential difference between the opposite polarization facets. Furthermore, this driving force for charge separation directly contributes to the enhancement of the photocatalytic hydrogen evolution reaction activity in ferroelectrics. Finally, it is proved that the screening field compensates part of the depolarization field and can be diminished by adding a dielectric layer on the ferroelectric surface. These findings demonstrate the importance of increasing the depolarization field and decreasing the screening field for efficient charge separation in ferroelectric semiconductor photocatalysts.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here