z-logo
Premium
Construction of Chiral, Helical Nanoparticle Superstructures: Progress and Prospects
Author(s) -
MokashiPunekar Soumitra,
Zhou Yicheng,
Brooks Sydney C.,
Rosi Nathaniel L.
Publication year - 2020
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201905975
Subject(s) - nanotechnology , nanomaterials , metamaterial , materials science , variety (cybernetics) , nanoparticle , computer science , artificial intelligence , optoelectronics
Chiral nanoparticle (NP) superstructures, in which discrete NPs are assembled into chiral architectures, represent an exciting and growing class of nanomaterials. Their enantiospecific properties make them promising candidates for a variety of potential applications. Helical NP superstructures are a rapidly expanding subclass of chiral nanomaterials in which NPs are arranged in three dimensions about a screw axis. Their intrinsic asymmetry gives rise to a variety of interesting properties, including plasmonic chiroptical activity in the visible spectrum, and they hold immense promise as chiroptical sensors and as components of optical metamaterials. Herein, a concise history of the foundational conceptual advances that helped define the field of chiral nanomaterials is provided, and some of the major achievements in the development of helical nanomaterials are highlighted. Next, the key methodologies employed to construct these materials are discussed, and specific merits that are offered by each assembly methodology are identified, as well as their potential disadvantages. Finally, some specific examples of the emerging applications of these materials are discussed and some areas of future development and research focus are proposed.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here