Premium
Conductive Silk‐Based Composites Using Biobased Carbon Materials
Author(s) -
López Barreiro Diego,
MartínMoldes Zaira,
Yeo Jingjie,
Shen Sabrina,
Hawker Morgan J.,
MartinMartinez Francisco J.,
Kaplan David L.,
Buehler Markus J.
Publication year - 2019
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201904720
Subject(s) - materials science , biocompatible material , silk , nanotechnology , composite number , electrical conductor , carbon nanotube , conductive polymer , composite material , electronics , polymer , biomedical engineering , medicine , chemistry
Abstract There is great interest in developing conductive biomaterials for the manufacturing of sensors or flexible electronics with applications in healthcare, tracking human motion, or in situ strain measurements. These biomaterials aim to overcome the mismatch in mechanical properties at the interface between typical rigid semiconductor sensors and soft, often uneven biological surfaces or tissues for in vivo and ex vivo applications. Here, the use of biobased carbons to fabricate conductive, highly stretchable, flexible, and biocompatible silk‐based composite biomaterials is demonstrated. Biobased carbons are synthesized via hydrothermal processing, an aqueous thermochemical method that converts biomass into a carbonaceous material that can be applied upon activation as conductive filler in composite biomaterials. Experimental synthesis and full‐atomistic molecular dynamics modeling are combined to synthesize and characterize these conductive composite biomaterials, made entirely from renewable sources and with promising applications in fields like biomedicine, energy, and electronics.