z-logo
Premium
CSF1R‐ and SHP2‐Inhibitor‐Loaded Nanoparticles Enhance Cytotoxic Activity and Phagocytosis in Tumor‐Associated Macrophages
Author(s) -
Ramesh Anujan,
Kumar Sahana,
Nandi Dipika,
Kulkarni Ashish
Publication year - 2019
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201904364
Subject(s) - cancer research , phagocytosis , macrophage , cancer immunotherapy , macrophage colony stimulating factor , microbiology and biotechnology , macrophage polarization , cancer cell , syk , cd47 , signal transduction , proto oncogene tyrosine protein kinase src , biology , immunotherapy , immune system , cancer , immunology , in vitro , biochemistry , tyrosine kinase , genetics
Immune modulation of macrophages has emerged as an attractive approach for anti‐cancer therapy. However, there are two main challenges in successfully utilizing macrophages for immunotherapy. First, macrophage colony stimulating factor (MCSF) secreted by cancer cells binds to colony stimulating factor 1 receptor (CSF1‐R) on macrophages and in turn activates the downstream signaling pathway responsible for polarization of tumor‐associated macrophages (TAMs) to immunosuppressive M2 phenotype. Second, ligation of signal regulatory protein α (SIRPα) expressed on myeloid cells to CD47, a transmembrane protein overexpressed on cancer cells, activates the Src homology region 2 (SH2) domain ‐phosphatases SHP‐1 and SHP‐2 in macrophages. This results in activation of “eat‐me‐not” signaling pathway and inhibition of phagocytosis. Here, it is reported that self‐assembled dual‐inhibitor‐loaded nanoparticles (DNTs) target M2 macrophages and simultaneously inhibit CSF1R and SHP2 pathways. This results in efficient repolarization of M2 macrophages to an active M1 phenotype, and superior phagocytic capabilities as compared to individual drug treatments. Furthermore, suboptimal dose administration of DNTs in highly aggressive breast cancer and melanoma mouse models show enhanced anti‐tumor efficacy without any toxicity. These studies demonstrate that the concurrent inhibition of CSF1‐R and SHP2 signaling pathways for macrophage activation and phagocytosis enhancement could be an effective strategy for macrophage‐based immunotherapy.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here