z-logo
Premium
Transient Light‐Emitting Diodes Constructed from Semiconductors and Transparent Conductors that Biodegrade Under Physiological Conditions
Author(s) -
Lu Di,
Liu TzuLi,
Chang JanKai,
Peng Dongsheng,
Zhang Yi,
Shin Jiho,
Hang Tao,
Bai Wubin,
Yang Quansan,
Rogers John A.
Publication year - 2019
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201902739
Subject(s) - materials science , optoelectronics , light emitting diode , electronics , electroluminescence , diode , semiconductor , silicon , nanotechnology , electrical engineering , layer (electronics) , engineering
Abstract Transient forms of electronics, systems that disintegrate, dissolve, resorb, or sublime in a controlled manner after a well‐defined operating lifetime, are of interest for applications in hardware secure technologies, temporary biomedical implants, “green” consumer devices and other areas that cannot be addressed with conventional approaches. Broad sets of materials now exist for a range of transient electronic components, including transistors, diodes, antennas, sensors, and even batteries. This work reports the first examples of transient light‐emitting diodes (LEDs) that can completely dissolve in aqueous solutions to biologically and environmentally benign end products. Thin films of highly textured ZnO and polycrystalline Mo serve as semiconductors for light generation and conductors for transparent electrodes, respectively. The emitted light spans a range of visible wavelengths, where nanomembranes of monocrystalline silicon can serve as transient filters to yield red, green, and blue LEDs. Detailed characterization of the material chemistries and morphologies of the constituent layers, assessments of their performance properties, and studies of their dissolution processes define the underlying aspects. These results establish an electroluminescent light source technology for unique classes of optoelectronic systems that vanish into benign forms when exposed to aqueous conditions in the environment or in living organisms.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here