Premium
Recent Progress in CVD Growth of 2D Transition Metal Dichalcogenides and Related Heterostructures
Author(s) -
Zhang Yu,
Yao Yuyu,
Sendeku Marshet Getaye,
Yin Lei,
Zhan Xueying,
Wang Feng,
Wang Zhenxing,
He Jun
Publication year - 2019
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201901694
Subject(s) - heterojunction , nanotechnology , materials science , chemical vapor deposition , transition metal , electronics , superlattice , catalysis , optoelectronics , chemistry , biochemistry
In recent years, 2D layered materials have received considerable research interest on account of their substantial material systems and unique physicochemical properties. Among them, 2D layered transition metal dichalcogenides (TMDs), a star family member, have already been explored over the last few years and have exhibited excellent performance in electronics, catalysis, and other related fields. However, to fulfill the requirement for practical application, the batch production of 2D TMDs is essential. Recently, the chemical vapor deposition (CVD) technique was considered as an elegant alternative for successfully growing 2D TMDs and their heterostructures. The latest research advances in the controllable synthesis of 2D TMDs and related heterostructures/superlattices via the CVD approach are illustrated here. The controlled growth behavior, preparation strategies, and breakthroughs on the synthesis of new 2D TMDs and their heterostructures, as well as their unique physical phenomena, are also discussed. Recent progress on the application of CVD‐grown 2D materials is revealed with particular attention to electronics/optoelectronic devices and catalysts. Finally, the challenges and future prospects are considered regarding the current development of 2D TMDs and related heterostructures.