z-logo
Premium
Fluorinated Low‐Dimensional Ruddlesden–Popper Perovskite Solar Cells with over 17% Power Conversion Efficiency and Improved Stability
Author(s) -
Shi Jishan,
Gao Yerun,
Gao Xiang,
Zhang Yun,
Zhang Junjie,
Jing Xin,
Shao Ming
Publication year - 2019
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201901673
Subject(s) - materials science , energy conversion efficiency , crystallinity , perovskite (structure) , dipole , chemical engineering , thermal stability , nanotechnology , optoelectronics , organic chemistry , composite material , chemistry , engineering
Abstract Low‐dimensional Ruddlesden–Popper perovskites (RPPs) exhibit excellent stability in comparison with 3D perovskites; however, the relatively low power conversion efficiency (PCE) limits their future application. In this work, a new fluorine‐substituted phenylethlammonium (PEA) cation is developed as a spacer to fabricate quasi‐2D (4FPEA) 2 (MA) 4 Pb 5 I 16 ( n = 5) perovskite solar cells. The champion device exhibits a remarkable PCE of 17.3% with a J sc of 19.00 mA cm −2 , a V oc of 1.16 V, and a fill factor (FF) of 79%, which are among the best results for low‐dimensional RPP solar cells ( n ≤ 5). The enhanced device performance can be attributed as follows: first, the strong dipole field induced by the 4‐fluoro‐phenethylammonium (4FPEA) organic spacer facilitates charge dissociation. Second, fluorinated RPP crystals preferentially grow along the vertical direction, and form a phase distribution with the increasing n number from bottom to the top surface, resulting in efficient charge transport. Third, 4FPEA‐based RPP films exhibit higher film crystallinity, enlarged grain size, and reduced trap‐state density. Lastly, the unsealed fluorinated RPP devices demonstrate superior humidity and thermal stability. Therefore, the fluorination of the long‐chain organic cations provides a feasible approach for simultaneously improving the efficiency and stability of low‐dimensional RPP solar cells.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here