z-logo
Premium
Addition of the Lewis Acid Zn(C 6 F 5 ) 2 Enables Organic Transistors with a Maximum Hole Mobility in Excess of 20 cm 2 V −1 s −1
Author(s) -
Paterson Alexandra F.,
Tsetseris Leonidas,
Li Ruipeng,
Basu Aniruddha,
Faber Hendrik,
Emwas AbdulHamid,
Panidi Julianna,
Fei Zhuping,
Niazi Muhammad R.,
Anjum Dalaver H.,
Heeney Martin,
Anthopoulos Thomas D.
Publication year - 2019
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201900871
Subject(s) - materials science , lewis acids and bases , dopant , electron mobility , thin film transistor , oled , organic semiconductor , organic electronics , benzothiophene , optoelectronics , transistor , diode , nanotechnology , doping , organic chemistry , thiophene , chemistry , electrical engineering , catalysis , layer (electronics) , engineering , voltage
Abstract Incorporating the molecular organic Lewis acid tris(pentafluorophenyl)borane [B(C 6 F 5 ) 3 ] into organic semiconductors has shown remarkable promise in recent years for controlling the operating characteristics and performance of various opto/electronic devices, including, light‐emitting diodes, solar cells, and organic thin‐film transistors (OTFTs). Despite the demonstrated potential, however, to date most of the work has been limited to B(C 6 F 5 ) 3 with the latter serving as the prototypical air‐stable molecular Lewis acid system. Herein, the use of bis(pentafluorophenyl)zinc [Zn(C 6 F 5 ) 2 ] is reported as an alternative Lewis acid additive in high‐hole‐mobility OTFTs based on small‐molecule:polymer blends comprising 2,7‐dioctyl[1]benzothieno [3,2‐b][1]benzothiophene and indacenodithiophene–benzothiadiazole. Systematic analysis of the materials and device characteristics supports the hypothesis that Zn(C 6 F 5 ) 2 acts simultaneously as a p ‐dopant and a microstructure modifier. It is proposed that it is the combination of these synergistic effects that leads to OTFTs with a maximum hole mobility value of 21.5 cm 2 V −1 s −1 . The work not only highlights Zn(C 6 F 5 ) 2 as a promising new additive for next‐generation optoelectronic devices, but also opens up new avenues in the search for high‐mobility organic semiconductors.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here