z-logo
Premium
Intrinsic Negative Magnetoresistance in Van Der Waals FeNbTe 2 Single Crystals
Author(s) -
Bai Wei,
Hu Zhongqiang,
Wang Sheng,
Hua Yang,
Sun Zhe,
Xiao Chong,
Xie Yi
Publication year - 2019
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201900246
Subject(s) - magnetoresistance , van der waals force , condensed matter physics , spintronics , angle resolved photoemission spectroscopy , materials science , magnetic field , electronic structure , chemical physics , physics , ferromagnetism , quantum mechanics , molecule
Magnetoresistance, the dependence of resistivity on the applied magnetic field, provides the opportunity to manipulate and utilize the electronic spin degree of freedom, which is not only a long‐term frontier field of solid‐state physics but also the cornerstone of information storage technology. However, the negative magnetoresistance (nMR) is a relatively rare case of magnetoresistance in which the microscopic origin is still elusive and for which it is difficult to define a general interpretation. Herein, an experimental case of an intrinsic unsaturated nMR is demonstrated in van der Waals FeNbTe 2 single crystal. The clear‐cut evidence in angle‐resolved photoemission spectroscopy (ARPES), the electronic transport measurement, and DC/AC magnetic susceptibility confirms that the intrinsic unsaturated nMR is derived from the comprehensive effect of Anderson localization and a spin glass state. Taking into consideration that intrinsic unsaturated nMR has so far been rarely reported, especially in van der Waals structures, it is anticipated that this work will not only lead to a deep understanding of the inherent microcosmic mechanism but will also serve as a guide to broaden the research of spintronics and information storage based on magnetoresistance.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here