Premium
Advances in Solution‐Processed Multijunction Organic Solar Cells
Author(s) -
Di Carlo Rasi Dario,
Janssen René A. J.
Publication year - 2019
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201806499
Subject(s) - materials science , photocurrent , photovoltaic system , organic solar cell , energy conversion efficiency , characterization (materials science) , absorption (acoustics) , optoelectronics , nanotechnology , solar energy , process engineering , polymer , electrical engineering , composite material , engineering
The efficiency of organic solar cells can benefit from multijunction device architectures, in which energy losses are substantially reduced. Herein, recent developments in the field of solution‐processed multijunction organic solar cells are described. Recently, various strategies have been investigated and implemented to improve the performance of these devices. Next to developing new materials and processing methods for the photoactive and interconnecting layers, specific layers or stacks are designed to increase light absorption and improve the photocurrent by utilizing optical interference effects. These activities have resulted in power conversion efficiencies that approach those of modern thin film photovoltaic technologies. Multijunction cells require more elaborate and intricate characterization procedures to establish their efficiency correctly and a critical view on the results and new insights in this matter are discussed. Application of multijunction cells in photoelectrochemical water splitting and upscaling toward a commercial technology is briefly addressed.