Premium
Large‐Area Organic Solar Cells: Material Requirements, Modular Designs, and Printing Methods
Author(s) -
Wang Guodong,
Adil Muhammad Abdullah,
Zhang Jianqi,
Wei Zhixiang
Publication year - 2019
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201805089
Subject(s) - fabrication , materials science , modular design , organic solar cell , printed electronics , coating , inkwell , energy conversion efficiency , nanotechnology , photovoltaic system , substrate (aquarium) , screen printing , organic electronics , optoelectronics , electrical engineering , computer science , engineering , composite material , polymer , medicine , alternative medicine , oceanography , pathology , transistor , voltage , geology , operating system
The printing of large‐area organic solar cells (OSCs) has become a frontier for organic electronics and is also regarded as a critical step in their industrial applications. With the rapid progress in the field of OSCs, the highest power conversion efficiency (PCE) for small‐area devices is approaching 15%, whereas the PCE for large‐area devices has also surpassed 10% in a single cell with an area of ≈1 cm 2 . Here, the progress of this fast developing area is reviewed, mainly focusing on: 1) material requirements (materials that are able to form efficient thick active layer films for large‐area printing); 2) modular designs (effective designs that can suppress electrical, geometric, optical, and additional losses, leading to a reduction in the PCE of the devices, as a consequence of substrate area expansion); and 3) printing methods (various scalable fabrication techniques that are employed for large‐area fabrication, including knife coating, slot‐die coating, screen printing, inkjet printing, gravure printing, flexographic printing, pad printing, and brush coating). By combining thick‐film material systems with efficient modular designs exhibiting low‐efficiency losses and employing the right printing methods, the fabrication of large‐area OSCs will be successfully realized in the near future.