Premium
Graphene Oxide as an Optical Biosensing Platform: A Progress Report
Author(s) -
MoralesNarváez Eden,
Merkoçi Arben
Publication year - 2019
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201805043
Subject(s) - biosensor , graphene , nanotechnology , materials science , surface plasmon resonance , raman scattering , oxide , raman spectroscopy , nanoparticle , optics , physics , metallurgy
A few years ago, crucial graphene oxide (GO) features such as the carbon/oxygen ratio, number of layers, and lateral size were scarcely investigated and, thus, their impact on the overall optical biosensing performance was almost unknown. Nowadays valuable insights about these features are well documented in the literature, whereas others remain controversial. Moreover, most of the biosensing systems based on GO were amenable to operating as colloidal suspensions. Currently, the literature reports conceptually new approaches obviating the need of GO colloidal suspensions, enabling the integration of GO onto a solid phase and leading to their application in new biosensing devices. Furthermore, most GO‐based biosensing devices exploit photoluminescent signals. However, further progress is also achieved in powerful label‐free optical techniques exploiting GO in biosensing, particularly using optical fibers, surface plasmon resonance, and surface enhanced Raman scattering. Herein, a critical overview on these topics is offered, highlighting the key role of the physicochemical properties of GO. New challenges and opportunities in this exciting field are also highlighted.