Premium
Gel/Solid Polymer Electrolytes Characterized by In Situ Gelation or Polymerization for Electrochemical Energy Systems
Author(s) -
Cho YoonGyo,
Hwang Chihyun,
Cheong Do Sol,
Kim YoungSoo,
Song HyunKon
Publication year - 2019
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201804909
Subject(s) - materials science , electrolyte , chemical engineering , polymer , ionic conductivity , electrode , polymerization , electrochemistry , in situ polymerization , fast ion conductor , monomer , lithium (medication) , polymer electrolytes , composite material , chemistry , medicine , engineering , endocrinology
A gel polymer electrolyte (GPE) is a liquid electrolyte (LE) entrapped by a small amount of polymer network less than several wt%, which is characterized by properties between those of liquid and solid electrolytes in terms of the ionic conductivity and physical phase. Electrolyte leakage and flammability, demerits of liquid electrolytes, can be mitigated by using GPEs in electrochemical cells. However, the contact problems between GPEs and porous electrodes are challenging because it is difficult to incorporate GPEs into the pores and voids of electrodes. Herein, the focus is on GPEs that are gelated in situ within cells instead of covering comprehensive studies of GPEs. A mixture of LE and monomer or polymer in a liquid phase is introduced into a pre‐assembled cell without electrolyte, followed by thermal gelation based on physical gelation, monomer polymerization, or polymer cross‐linking. Therefore, GPEs are formed omnipresent in cells, covering the pores of electrode material particles, and even the pores of separators. As a result, different from ex situ formed GPEs, the in situ GPEs have no electrode/electrolyte contact problems. Functional GPEs are introduced as a more advanced form of GPEs, improving lithium‐ion transference number or capturing transition metals released from electrode materials.