Premium
Advanced Technologies for High‐Energy Aluminum–Air Batteries
Author(s) -
Ryu Jaechan,
Park Minjoon,
Cho Jaephil
Publication year - 2019
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201804784
Subject(s) - materials science , anode , electrolyte , aluminium , carbon fibers , hydrogen , nanotechnology , electrode , metallurgy , composite material , chemistry , organic chemistry , composite number
Aluminum–air batteries are considered as next‐generation batteries owing to their high energy density with the abundant reserves, low cost, and lightweight of aluminum. However, there are several hurdles to be overcome, such as the sluggish rate of the oxygen reduction reaction (ORR) at the air electrode, precipitation of aluminum hydroxides and oxides at the anode, and severe hydrogen evolution problems at the interface of the anode and the electrolyte. Here, recent advances in silver metal and metal–nitrogen–carbon‐based ORR electrocatalysts, aluminum anodes, electrolytes, and the requirements of future research directions are mainly summarized.