Premium
Bioresponsive Nanoparticles Targeted to Infectious Microenvironments for Sepsis Management
Author(s) -
Zhang Can Yang,
Gao Jin,
Wang Zhenjia
Publication year - 2018
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201803618
Subject(s) - sepsis , nanomedicine , immune system , antibiotics , infectious disease (medical specialty) , inflammation , bacteria , immunology , medicine , microbiology and biotechnology , disease , nanoparticle , biology , materials science , nanotechnology , genetics , pathology
Abstract Sepsis is a life‐threatening disease resulted from a dysregulated host immune response to bacterial infections, continuing to cause high morbidity and mortality worldwide. Despite discoveries of many potential therapeutic targets, effective treatments of sepsis are lacking. Here, a strategy is reported to target infectious microenvironments (IMEs) via bioresponsive nanoparticles that simultaneously eliminate bacteria and alleviate the host inflammation response, thus managing sepsis in mice. The nanoparticle is made of copolymers sensitive to pH and bacterial enzymes to self‐assemble into a micelle loaded with both an antibiotic (ciprofloxacin) and an anti‐inflammatory agent ((2‐[(aminocarbonyl)amino]‐5‐(4‐fluorophenyl)‐3‐thiophenecarboxamide). In addition, the nanoparticle is conjugated with intercellular adhesion molecule‐1 antibodies to target IMEs. Nanoparticle targeting to IMEs and local cues as triggers to deliver therapeutics in on‐demand manners is demonstrated using an acute lung bacterial infection mouse model. In the sepsis mouse model induced by peritonitis at a lethal dose of bacterial invasion, it is shown that concurrently targeting pathogens and excessive inflammation pathways is valuable to manage the sepsis. The study illustrates not only the development of a new delivery system but also the mechanism‐based therapy of nanomedicine for infectious diseases.