z-logo
Premium
Compelling Rejuvenated Catalytic Performance in Metallic Glasses
Author(s) -
Liang ShunXing,
Jia Zhe,
Liu YuJing,
Zhang Wenchang,
Wang Weimin,
Lu Jian,
Zhang LaiChang
Publication year - 2018
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201802764
Subject(s) - materials science , catalysis , intermetallic , crystallization , grain boundary , chemical engineering , metastability , metal , chemical physics , nanotechnology , microstructure , metallurgy , chemistry , organic chemistry , alloy , engineering
Metallic glasses (MGs) with the metastable nature and random atomic packing structure have attracted large attention in the catalytic family due to their superior catalytic performance. In contrast, their crystalline counterparts are restricted by the highly ordered packing structure, fewer surface active sites, and crystallographic defects for catalytic activity. The uncertainty of the different catalytic mechanisms and the intrinsic characteristics correlated to MGs and their crystalline counterparts become a major impediment to promote their catalytic efficiencies and widespread applications. Herein, it is reported that the excellent catalytic behavior in Fe‐based MGs goes through a detrimental effect with the partial crystallization, but receives a compelling rejuvenation in the full crystallization. Further investigation reveals that multiphase intermetallics with electric potential differences in fully crystallized alloys facilitate the formation of galvanic cells. More importantly, extensively reduced grain boundaries due to grain growth greatly weaken electron trapping and promote inner electron transportation. The relatively homogenous grain‐boundary corrosion in the intermetallics contributes to well‐separated phases after reaction, leading to refreshment of the surface active sites, thereby quickly activating hydrogen peroxide and rapidly degrading organic pollutants. The exploration of catalytic mechanisms in the crystalline counterparts of MGs provides significant insights into revolutionize novel catalysts.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here