Premium
MOF‐Confined Sub‐2 nm Atomically Ordered Intermetallic PdZn Nanoparticles as High‐Performance Catalysts for Selective Hydrogenation of Acetylene
Author(s) -
Hu Mingzhen,
Zhao Shu,
Liu Shoujie,
Chen Chen,
Chen Wenxing,
Zhu Wei,
Liang Chao,
Cheong WengChon,
Wang Yu,
Yu Yi,
Peng Qing,
Zhou Kebin,
Li Jun,
Li Yadong
Publication year - 2018
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201801878
Subject(s) - intermetallic , materials science , nanoparticle , acetylene , catalysis , chemical engineering , x ray photoelectron spectroscopy , nanomaterials , high resolution transmission electron microscopy , nanotechnology , alloy , metallurgy , organic chemistry , transmission electron microscopy , chemistry , engineering
Abstract Controllable synthesis of ultrasmall atomically ordered intermetallic nanoparticles is a challenging task, owing to the high temperature commonly required for the formation of intermetallic phases. Here, a metal–organic framework (MOF)‐confined co‐reduction strategy is developed for the preparation of sub‐2 nm intermetallic PdZn nanoparticles, by employing the well‐defined porous structures of calcinated ZIF‐8 (ZIF‐8C) and an in situ co‐reduction therein. HAADF‐STEM, HRTEM, and EDS characterizations reveal the homogeneous dispersion of these sub‐2 nm intermetallic PdZn nanoparticles within the ZIF‐8C frameworks. XRD, XPS, and EXAFS measurements further confirm the atomically ordered intermetallic phase nature of these sub‐2 nm PdZn nanoparticles. Selective hydrogenation of acetylene evaluation results show the excellent catalytic properties of the sub‐2 nm intermetallic PdZn, which result from the energetically more favorable path for acetylene hydrogenation and ethylene desorption over the ultrasmall particles than over larger‐sized intermetallic PdZn as revealed by density functional theory (DFT) calculations. Moreover, this protocol is also extendable for the preparation of sub‐2 nm intermetallic PtZn nanoparticles and is expected to provide a novel methodology in synthesizing ultrasmall atomically ordered intermetallic nanomaterials by rationally functionalizing MOFs.