Premium
Visualization and Quantitative Detection of Friction Force by Self‐Organized Organic Layered Composites
Author(s) -
Terada Hideto,
Imai Hiroaki,
Oaki Yuya
Publication year - 2018
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201801121
Subject(s) - materials science , composite material , diacetylene , monomer , polymerization , visualization , polymer , mechanical engineering , engineering
Visualization and quantitative detection of external stimuli are significant challenges in materials science. Quantitative detection of friction force, a mechanical stress, is not easily achieved using conventional stimuli‐responsive materials. Here, the quantitative detection of friction force is reported, such as the strength and accumulated ammount, from the visible color of organic layered composites consisting of polydiacetylene (PDA) and organic amines without an excitation light source. The composites of the layered diacetylene monomer crystal and interlayer organic amine are synthesized through self‐organization from the precursor solution. After topochemical polymerization, the layered composites based on PDA show tunable temperature‐responsive and mechanoresponsive color‐change properties depending on the types of interlayer amines. The layered composites are homogeneously coated on a filter paper. The change in color of the paper is quantitatively used to visualize the strength and accumulated amount of the applied friction force. Furthermore, writing pressure is measured by friction force using the paper device.