Premium
Controllable Growth of Graphene on Liquid Surfaces
Author(s) -
Liu Jinxin,
Fu Lei
Publication year - 2019
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201800690
Subject(s) - graphene , materials science , nanotechnology , nucleation , chemical vapor deposition , etching (microfabrication) , fabrication , carbon fibers , graphene oxide paper , dewetting , chemical engineering , thin film , composite material , layer (electronics) , composite number , medicine , chemistry , alternative medicine , organic chemistry , pathology , engineering
Abstract Controllable fabrication of graphene is necessary for its practical application. Chemical vapor deposition (CVD) approaches based on solid metal substrates with morphology‐rich surfaces, such as copper (Cu) and nickel (Ni), suffer from the drawbacks of inhomogeneous nucleation and uncontrollable carbon precipitation. Liquid substrates offer a quasiatomically smooth surface, which enables the growth of uniform graphene layers. The fast surface diffusion rates also lead to unique growth and etching kinetics for achieving graphene grains with novel morphologies. The rheological surface endows the graphene grains with self‐adjusted rotation, alignment, and movement that are driven by specific interactions. The intermediary‐free transfer or the direct growth of graphene on insulated substrates is demonstrated using liquid metals. Here, the controllable growth process of graphene on a liquid surface to promote the development of attractive liquid CVD strategies is in focus. The exciting progress in controlled growth, etching, self‐assembly, and delivery of graphene on a liquid surface is presented and discussed in depth. In addition, prospects and further developments in these exciting fields of graphene growth on a liquid surface are discussed.