Premium
Self‐Healing Proton‐Exchange Membranes Composed of Nafion–Poly(vinyl alcohol) Complexes for Durable Direct Methanol Fuel Cells
Author(s) -
Li Yixuan,
Liang Liang,
Liu Changpeng,
Li Yang,
Xing Wei,
Sun Junqi
Publication year - 2018
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201707146
Subject(s) - nafion , materials science , membrane , vinyl alcohol , methanol fuel , proton exchange membrane fuel cell , methanol , chemical engineering , ultimate tensile strength , conductivity , polymer chemistry , composite material , proton transport , fabrication , polymer , organic chemistry , chemistry , electrochemistry , electrode , biochemistry , engineering , medicine , alternative medicine , pathology
Proton‐exchange membranes (PEMs) that can heal mechanical damage to restore original functions are important for the fabrication of durable and reliable direct methanol fuel cells (DMFCs). The fabrication of healable PEMs that exhibit satisfactory mechanical stability, enhanced proton conductivity, and suppressed methanol permeability via hydrogen‐bonding complexation between Nafion and poly(vinyl alcohol) (PVA) followed by postmodification with 4‐carboxybenzaldehyde (CBA) molecules is presented. Compared with pure Nafion, the CBA/Nafion–PVA membranes exhibit enhanced mechanical properties with an ultimate tensile strength of ≈20.3 MPa and strain of ≈380%. The CBA/Nafion–PVA membrane shows a proton conductivity of 0.11 S cm −1 at 80 °C, which is 1.2‐fold higher than that of a Nafion membrane. The incorporated PVA gives the CBA/Nafion–PVA membranes excellent proton conductivity and methanol resistance. The resulting CBA/Nafion–PVA membranes are capable of healing mechanical damage of several tens of micrometers in size and restoring their original proton conductivity and methanol resistance under the working conditions of DMFCs. The healing property originates from the reversibility of hydrogen‐bonding interactions between Nafion and CBA‐modified PVA and the high chain mobility of Nafion and CBA‐modified PVA.