Premium
Aligning Ag Nanowires by a Facile Bioinspired Directional Liquid Transfer: Toward Anisotropic Flexible Conductive Electrodes
Author(s) -
Meng Lili,
Bian Ruixin,
Guo Cheng,
Xu Bojie,
Liu Huan,
Jiang Lei
Publication year - 2018
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201706938
Subject(s) - materials science , dewetting , nanotechnology , electrode , nanowire , conductivity , substrate (aquarium) , electrical conductor , wetting , coating , transfer printing , anisotropy , flexible electronics , thin film , composite material , optics , chemistry , oceanography , physics , geology
Abstract Recent years have witnessed the booming development of transparent flexible electrodes (TFEs) for their applications in electronics and optoelectronic devices. Various strategies have thus been developed for preparing TFEs with higher flexibility and conductivity. However, little work has focused on TFEs with anisotropic conductivity. Here, a facile strategy of directional liquid transfer is proposed, guided by a conical fibers array (CFA), based on which silver nanowires (AgNWs) are aligned on a soft poly(ethylene terephthalate) substrate in large scale. After further coating a second thin layer of the conductive polymer poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate), a TFE with notable anisotropic conductivity and excellent optical transmittance of 95.2% is prepared. It is proposed that the CFA enables fine control over the receding of the three‐phase contact line during the dewetting process, where AgNWs are guided and aligned by the as‐generated directional stress. Moreover, anisotropic electrochemical deposition is enabled where the Cu nanoparticles deposit only on the oriented AgNWs, leading to a surface with anisotropic wetting behavior. Importantly, the approach enables alignment of AgNWs via multiple directions at one step. It is envisioned that the as‐developed approach will provide an optional approach for simple and low‐cost preparation of TFE with various functions.