Premium
Hollow Structures Based on Prussian Blue and Its Analogs for Electrochemical Energy Storage and Conversion
Author(s) -
Nai Jianwei,
Lou Xiong Wen David
Publication year - 2019
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201706825
Subject(s) - prussian blue , materials science , electrochemical energy storage , electrochemistry , energy storage , electrochemical energy conversion , nanotechnology , blue light , energy transformation , chemical engineering , optoelectronics , supercapacitor , electrode , chemistry , thermodynamics , power (physics) , physics , quantum mechanics , engineering
Due to their special structural characteristics, hollow structures grant fascinating physicochemical properties and widespread applications, especially in electrochemical energy storage and conversion. Recently, the research of Prussian blue (PB) and its analog (PBA) related nanomaterials has emerged and has drawn considerable attention because of their low cost, facile preparation, intrinsic open framework, and tunable composition. Here, the recent progress in the study of PB‐ and PBA‐based hollow structures for electrochemical energy storage and conversion are summarized and discussed. First, some remarkable examples in the synthesis of hollow structures from PB‐ and PBA‐based materials are illustrated in terms of the structural architectures, i.e., closed single‐shelled hollow structures, open hollow structures, and complex hollow structures. Thereafter, their applications as potential electrode materials for lithium‐/sodium‐ion batteries, hybrid supercapacitors, and electrocatalysis are demonstrated. Finally, the current achievements in this field together with the limits and urgent challenges are summarized. Some perspectives on the potential solutions and possible future trends are also provided.