Premium
True Low‐Power Self‐Locking Soft Actuators
Author(s) -
Kim Seung Jae,
Kim Onnuri,
Park Moon Jeong
Publication year - 2018
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201706547
Subject(s) - actuator , materials science , bending , artificial muscle , power (physics) , soft robotics , voltage , displacement (psychology) , nanotechnology , optoelectronics , mechanical engineering , electrical engineering , composite material , engineering , physics , psychology , quantum mechanics , psychotherapist
Natural double‐layered structures observed in living organisms are known to exhibit asymmetric volume changes with environmental triggers. Typical examples are natural roots of plants, which show unique self‐organized bending behavior in response to environmental stimuli. Herein, light‐ and electro‐active polymer (LEAP) based actuators with a double‐layered structure are reported. The LEAP actuators exhibit an improvement of 250% in displacement and hold an object three times heavier as compared to that in the case of conventional electro‐active polymer actuators. Most interestingly, the bending motion of the LEAP actuators can be effectively locked for a few tens of minutes even in the absence of a power supply. Further, the self‐locking LEAP actuators show a large and reversible bending strain of more than 2.0% and require only 6.2 mW h cm −2 of energy to hold an object for 15 min at an operating voltage of 3 V. These novel self‐locking soft actuators should find wide applicability in artificial muscles, biomedical microdevices, and various innovative soft robot technologies.