z-logo
Premium
Chemical and Morphological Control of Interfacial Self‐Doping for Efficient Organic Electronics
Author(s) -
Liu Yao,
Cole Marcus D.,
Jiang Yufeng,
Kim Paul Y.,
Nordlund Dennis,
Emrick Todd,
Russell Thomas P.
Publication year - 2018
Publication title -
advanced materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 10.707
H-Index - 527
eISSN - 1521-4095
pISSN - 0935-9648
DOI - 10.1002/adma.201705976
Subject(s) - materials science , doping , organic electronics , electronics , nanotechnology , optoelectronics , transistor , electrical engineering , voltage , engineering
Solution‐based processing of materials for electrical doping of organic semiconductor interfaces is attractive for boosting the efficiency of organic electronic devices with multilayer structures. To simplify this process, self‐doping perylene diimide (PDI)‐based ionene polymers are synthesized, in which the semiconductor PDI components are embedded together with electrolyte dopants in the polymer backbone. Functionality contained within the PDI monomers suppresses their aggregation, affording self‐doping interlayers with controllable thickness when processed from solution into organic photovoltaic devices (OPVs). Optimal results for interfacial self‐doping lead to increased power conversion efficiencies (PCEs) of the fullerene‐based OPVs, from 2.62% to 10.64%, and of the nonfullerene‐based OPVs, from 3.34% to 10.59%. These PDI–ionene interlayers enable chemical and morphological control of interfacial doping and conductivity, demonstrating that the conductive channels are crucial for charge transport in doped organic semiconductor films. Using these novel interlayers with efficient doping and high conductivity, both fullerene‐ and nonfullerene‐based OPVs are achieved with PCEs exceeding 9% over interlayer thicknesses ranging from ≈3 to 40 nm.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here